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A new optimization method, combining design of experiments with evolutionary computing, is proposed: it handles a set of design 

variables, the size of which changes during the process: initially, most sensitive variables are activated; subsequently, the whole set of 

variables is activated. The optimal synthesis of a magnetic field for magneto-fluid treatment is considered as the case study. 
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I. INTRODUCTION 

HEN TACKLING problems of optimal shape design in 

magnetics, characterized by Finite Elements (FE) field 

analyses for solving the associated direct problem, the so-

called parametric approach is normally adopted: a set of many 

design variables, defining the unknown shape of the device to 

synthesize, is searched for, usually exploiting algorithms of 

evolutionary computing. In particular, in multi-objective 

problems, the search for the Pareto-optimal front of the 

problem is based on popular algorithms like e.g. Non-

Dominated Genetic Algorithm (NSGA) or Multi Objective 

Particle Swarm Optimization (MOPSO) [1]–[5]. When the 

dimensionality of the design problem, mainly dictated by the 

number of design variables, is high, a combinatorial increase 

of feasible design points occurs: in case, cost-effective 

procedures of optimization can be implemented exploiting e.g. 

surrogate models, i.e. identifying response surfaces that 

replace the objective functions at a lower cost [7]–[8]. 

Alternatively, one might think of subdividing the design 

variable set in e.g. two subsets, in such a way that the first part 

of the optimization is driven by the most sensitive variables, in 

order to approach fast the region of Pareto-optimal solutions, 

and then switching to the full set of variables, in order to focus 

on the details of the search region. The principle of 

progressively enhancing the design variable set emulates what 

happens in the real-life operation of a device designer; 

moreover, it appears to be suited to evolutionary computing, 

when substantial variations of the objectives take place in the 

first group of iterations. An algorithm implementing the 

switched variable approach is here proposed. 

II. PROPOSED OPTIMIZATION METHOD 

The proposed optimization method combines Design Of 

Experiments (DOE) [9] with NSGA [2], and acts on a set of 

design variables the size of which changes during the 

optimization process. The SV-NSGA-DOE (SV, switched 

variables) algorithm works as shown in Fig 1. At first the DOE 

analysis is used to evaluate what are the design variables that 

are more sensible within the prescribed bounds. Exploiting 

Placket-Burmann tables [9], a cost-effective evaluation of 

sensitivity is performed: a number NDOE of FE analyses makes 

it possible to approximate the sensitivity Sxi of each out of NV 

design variables. Then, the average sensitivity, Sm, is: 

𝑆𝑚 =
1

𝑁𝑉
∑ 𝑆𝑥𝑖
𝑁𝑉
𝑖=1                 (1) 

The most sensitive design variables are defined as those for 

which Sxi > Sm, i=1,..NV. This way, a reduced set of design 

variables is activated. The sensitivity evaluation takes place 

only once, before the NSGA-based optimization – acting on 

the reduced set of design variables - is started. After a number 

of iterations, it is decided to switch, and the full set of design 

variables is eventually activated.  

 
Fig. 1. Flow chart of SV-NSGA-DOE algorithm.  

Therefore, NSGA optimization is performed in two steps 

(Fig. 1): in the former only the reduced set of most sensitive 

design variables is considered, while in the latter the full set of 

design variables is considered. Npop individuals are selected in 

the initial population, which NDOE individuals used for the 

DOE analysis are added to. Therefore, the initial population 

contains NDOE + Npop individuals. A first selection, ruled by 

non-dominated sorting, reduces the population size to Npop. At 

each iteration the stopping criterion is evaluated: if it is 

fulfilled, the algorithm ‘switches’ and all the design variables 

are activated in the optimization procedure; the population 

size remains equal to Npop and the ranges of design variables 

already active before switching do not change as well. The 
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optimization ends when the stopping criterion is again 

fulfilled. 

The NSGA algorithm generally stops when the maximum 

number of iteration is achieved. In this work, an automatic 

stopping criterion, based on the evaluation of the front 

displacement, is implemented. In particular, in the 

chromosome of the h-th iteration the distance of each 

individual from the origin of the objective space (utopia 

point), dj(h) j=1,…,Npop, is computed; then, the average 

distance, dm(h), is evaluated as: 

𝑑𝑚(ℎ) =
1

𝑁𝑝𝑜𝑝
∑ 𝑑𝑗
𝑁𝑝𝑜𝑝
𝑗=1

(ℎ)            (2) 

This average distance is compared with the one at the 

previous generation, dm(h-1). If the relative difference is lower 

than a prescribed threshold, d%,th (e.g. 1%), the front is 

considered to be stationary and the NSGA can either ‘switch’ 

to the full set of design variables (first step) or stop (second 

step). In practice, the switch or stop event is decided by 

averaging M percentage difference, d%(h).  

III. CASE STUDY: POWER INDUCTOR FOR MAGNETIC 

NANOPARTICLE HEATING 

Fig. 2 shows the cross section of the axi-symmetric 

geometry of the device. The Petri dish is placed in a thermally 

insulated box where a water flow keeps the temperature of the 

system at 37°C. The magnetic field device is a two-turn 

inductor with five ferrite blocks placed as in Fig. 2 in order to 

concentrate the magnetic flux lines. The magnetic field 

analysis problem, based on the A-V formulation, is solved in 

time-harmonics conditions using a FE code [10]-[11]. The 

inductor is supposed to be supplied by means of a voltage of 

600 V. A typical FE mesh exhibits 23,000 nodes and 13,000 

elements. 

The aim of the optimization problem is to minimize both 

(f1) the inhomogeneity of the magnetic field, H, in the Petri 

dish as in [12] with a tolerance interval of 10 A/m, and (f2) 

the inverse of the average magnetic field strength in the Petri. 

           
Fig. 2. Model geometry, mesh detail, design variables, and magnetic flux lines 

IV. RESULTS 

Fig. 3 shows the results obtained starting from the same 

initial population of Npop individuals and applying: 

a. NSGA-II algorithm (results referred as #_NSGA); 

b. SV-NSGA-DOE (results referred as #_SV); 

c. NSGA-II algorithm incorporating the DOE-evaluated 

individuals in the initial population (named NSGA-DOE with, 

results referred as #_DOE). 

In the presented example only three design variables are 

selected as more sensible in the reduced set (d2, ST and HFS 

in Fig 2). In Fig. 3 it appears that the Pareto front obtained 

using the proposed SV-NSGA-DOE algorithm is broader than 

the one fond via a standard NSGA-II algorithm. Also the 

incorporation of the extra individuals used in the initial DOE 

analysis contributes to enhance results. Moreover, it can be 

noted that the solutions obtained by means of reduced design 

variable set are located at the ends of the Pareto front.  

In Fig. 4 the evolution of the f1 objective function is shown, 

considering at each iteration the best out of Npop values. It can 

be noted that substantial function variations take place both 

before and after the switch of design variables. 

 
Fig. 3. Pareto fronts obtained starting from the same initial population (start) 

and applying methods a, b and c. SV, DOE and NSGA generated individuals, 

Pareto_# individuals on Pareto front, DOE individuals of the DOE analysis, 
stop_SV individuals at switching iteration using b. NSGA stops after 30 

iterations, NSGA-DOE after 48, and SV-NSGA-DOE after 53 (switch at 37). 

 
Fig. 4. History of the f1 objecitve function: the switch line from reduced to full 

set of design variables is shown. 
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